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ABSTRACT

This article presents a framework for studying the role of recovery on defaultable debt prices (for a

wide class of processes describing recovery rates and default probability). These debt models have

the ability to differentiate the impact of recovery rates and default probability, and can be employed

to infer the market expectation of recovery rates implicit in bond prices. Empirical implementation

of these models suggests two central findings. First, the recovery concept that specifies recovery as a

fraction of the discounted par value has broader empirical support. Second, parametric debt valuation

models can provide a useful assessment of recovery rates embedded in bond prices.
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This article analyzes the effect of recovery on the price of defaultable debt. We pose two empirical

questions using defaultable debt models: (i) Which concept of recovery is supported in market price of

corporate coupon bonds? (ii) When does recovery (in default) have an identifiable impact on debt prices?

If so, what can be learned about recovery rates embedded in market debt prices? We also theoretically

investigate whether risk-neutral expected recovery rates are lower or higher than its physical counterpart.

These issues are crucial for understanding the role of recovery in default risk modeling.

Our theoretical analysis reveals that cross-sectional variations in risk-neutral expected recovery rates

are possibly impacted by differences in counterparty risk aversion and firm-specific moments of the physi-

cal recovery density. We derive two results. First, our model suggests that the risk-neutral default probabil-

ities are not only higher than physical default probabilities but also inversely related to the level of recovery.

Second, the derived risk-neutral recovery density is such that the risk-neutralized expected recovery rates

are lower than their physical counterpart. Firms with more volatile or left-skewed (physical) recovery den-

sities may incur further reductions in risk-neutral expected recoveries. These features are possibly reflected

in the term structure of credit spreads.

For the empirical application involving risky debt models and stochastic recovery, we appeal to the

framework in Duffie and Singleton (1999), Jarrow and Turnbull (1995) and Lando (1998). We derive

defaultable coupon bond prices under the assumption that (1) the bondholders recover a fraction of the

face value of the bond (the “Recovery of Face Value” model), or (2) the bondholders recover a fraction of

the present value of face (the “Recovery of Treasury” model), and (3) the bondholders recover a fraction

proportional to the pre-default market value (the “Recovery of Market Value” model). We provide two

incremental contributions. First, the approach allows for a flexible correlation structure between the risk-

free interest rate, the default probability and the recovery rate. Second, in our model, the recovery rate can

be linked to default probability or to other fundamental factors that proxy default risk. The debt model can

therefore be used to separate credit spreads into their default probability and recovery related components.

Some of the recovery models can be applied to infer the market’s expectation of recovery rate implicit in
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bond prices. Finally, standard model assessment tools can be employed to gauge which recovery concept

has broader empirical support. Even if all recovery concepts are adequately supported by the data, they

could fundamentally depart in the quality of recovery levels implied by market prices. As such, these

differences could be relevant for the design and management of recovery sensitive instruments.1

Risky debt models with stochastic recovery rates are applied to a sample of BBB-rated corporate bonds.

The closed-form defaultable bond models we test rely on several assumptions. One, guided by our theoreti-

cal results, we specify that recovery rates are negatively associated with default probability. This parametric

link is also suggested by an empirical study by Fitch that shows that when aggregate defaults tend to rise,

actual recovery rates often decline (WSJ; March 19, 2001). Two, we posit a family of hazard rates that

are linear in the short interest rate (Duffee (1999), Duffie and Singleton (1997), and Duffie and Singleton

(1999)). Lastly, it is assumed (for tractability) that the interest rate process follows a Markov process. Our

theoretical characterizations show that different recovery conventions can have distinct implications for

defaultable bonds.

Our empirical exercises provide several insights. Between the recovery of face value model, the recov-

ery of treasury model, and a version of the Duffie-Singleton model, the risky debt data prefers the recovery

of treasury model. For example, the out-of-sample absolute yield basis point errors and the absolute dol-

lar pricing errors are consistently lower for the recovery of treasury model (and statistically significant).

Adopting the recovery of treasury model is also found to reduce the dispersion of pricing errors. These

results have the implication that bondholders do not anticipate immediate cash recovery of the face value

of the bond. The underlying assumptions of the recovery of treasury model may more closely approximate

the implicit valuation process of the market-place.

1The recovery of market-value model of Duffie and Singleton (1999) has led to considerable insights about credit risks. In
their debt valuation model, they adopt the assumption that recovery in default is proportional to the pre-default market value of
the defaultable security. For this case, they prove that the defaultable debt value is the discounted expectation of the promised
payments, where the discount rate combines time value, default arrival and recovery rates. Although this framework has facilitated
tractable closed-form characterizations of defaultable securities and it has generated realistic credit spreads, the simplicity and
elegance of this approach comes at a cost of confounding the effect of recovery-in-default from the probability of default. For this
reason, determining recovery concepts that allow debt prices to reveal information about expected recovery levels can prove useful
in the design of recovery sensitive credit derivatives. The language of the Basle Accord, for instance, requires distinct assessments
of the credit risk events of default and loss given default.
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The second insight that emerges is that the recovery of face value model and the recovery of treasury

model are both informative about expected recovery rates. These estimates provide a useful benchmark for

comparing expected recoveries over time and across credit ratings. Finally, we observe that the expected

recovery rates are much less volatile for the recovery of face value model. The recovery of face value

convention may well be a more suitable contracting choice for writing contingent claims on recoveries.

This paper is organized as follows. Section 1 explains how risk-neutral recovery rates are related to the

density of the physical recovery, and counterparty risk aversion. In section 2, we present a framework for

pricing defaultable coupon bonds under broad recovery specifications. The next section develops closed-

form models of defaultable bonds that allow recovery to vary with default probability. Our empirical

results and estimation strategy is outlined in Sections 4 through 7. In particular, we present the out-of-

sample pricing error results and the estimates of the market implied recovery rates. Section 8 summarizes

our main results and concludes.

1. Recovery, Default, and the Market Price of Recovery Risk

Most default risk models directly specify an adapted process for the expected level of recovery under

the risk-neutral measure (starting with Duffie and Singleton (1999) and Jarrow and Turnbull (1995)). By

implication there is the recognition that the actual/physical level of recovery is a random variable, given

default, with an expected value that can be modeled for valuation purposes. To clarify how firm-specific

risk-neutral recovery rates may be determined in an economic equilibrium, let w̃ denote the proportion of

value recovered in default. Suppose the physical recovery rate given default has a density with support in

the unit interval, say f P[w̃], 0≤ w̃≤ 1 satisfying
R 1

0 f P[w̃]dw̃ = 1.

Let πP be the probability of default under the physical probability measure. The risk-neutral probability

πQ is abstractly linked to its physical counterpart and possibly recovery. When is physical expected recov-

ery rate at least as large as the risk-neutral expected recovery rate? When is the risk-neutral probability of

3



default at least as large as the physical probability of default? Answers to these questions have implications

for the price of default risk and/or recovery risk and for interpreting model-implied recovery rates.

To derive an explicit relationship between expected recovery rates under the risk-neutral and physical

probability measures, consider a problem where a firm could default on its obligation. Counterparties are

affected and consequently desire insurance against this event. The lower the expected recovery rate, the

greater its impact on counterparties and the more they are willing to pay to cover against default. For a

counterparty wealth level of W0, their post-default wealth may be written as: W0− (1− w̃)F, where, for

simplicity, F is the notional principal at stake. Therefore the expected utility of wealth, for utility function

U [.], conditional on default, assuming no hedging, is given by EP {U [w̃]}=
R 1

0 U [W0−(1− w̃)F ] f P[w̃]dw̃,

where EP{.} is expectation under the physical probability measure.

Consider a contingent claim written on the recovery rate w̃ and paying the claim-holder the amount

C[w̃] were default to occur with a recovery rate of w̃. Let℘denote the price of this claim. The counterparty

wealth of buying η units of the claim is W0−η℘with probability: (1−πP), and with probability πP, it is:

W0− (1− w̃)F + ηC[w̃]−η℘. The expected utility of the counterparty buying insurance is:

EP {U [w̃]} ≡ (1−πP)U [W0−η℘]+πP
Z 1

0
U [W0− (1− w̃)F + ηC[w̃]−η℘] f P[w̃]dw̃. (1)

By a variational argument, the partial derivative of EP {U [w̃]} with respect to η at the optimum, evaluated

at η = 0, should be zero. Denoting U ′[.]≡ ∂U [.]/∂w̃, this condition yields the price of insurance as:

℘ =
πP
R 1

0 U ′ [W0− (1− w̃)F]×C[w̃]× f P[w̃]dw̃

(1−πP)U ′ [W0]+πP
R 1

0 U ′ [W0− (1− w̃)F] f P[w̃]dw̃
, (2)

= πQ
Z 1

0

(
U ′ [W0− (1− w̃)F]R 1

0 U ′ [W0− (1− w̃)F] f P[w̃]dw

)
×C[w̃]× f P[w̃]dw̃, (3)

where the risk-neutral default probability, πQ, in (3) can be defined as:

πQ ≡ πP
R 1

0 U ′ [W0− (1− w̃)F] f P[w̃]dw̃

(1−πP)U ′ [W0] + πP
R 1

0 U ′ [W0− (1− w̃)F] f P[w̃]dw̃
, (4)
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which is a valid probability function since πP ∈ [0,1]. Equation (4) provides the economic intuition that the

risk-neutral default probability is related to (i) the physical probability of default πP, (ii) the counterparty

risk aversion as reflected in the marginal utility of wealth, and (iii) the distribution of physical recovery.

Focus first on full recovery with w̃ = 1, implying
R 1

0 U ′ [W0− (1− w̃)F] f P[w̃]dw̃ = U ′ [W0] so that

πQ = πP. Consider next the more plausible scenario of partial recovery. For a broad marginal utility class,

it is reasonable to expect U ′[W0]R 1
0 U ′[W0−(1−w̃)F] f P[w̃]dw̃

< 1. Substituting this restriction into (4), we obtain:

πQ > πP. (5)

With non-zero risk aversion and partial recovery, the risk-neutral default likelihood is therefore an amplified

version of physical default probabilities. Equations (4)-(5) suggest that the amplification of the risk-neutral

default probability is positively related to the tails of the loss distribution. This result is relevant for mod-

eling recovery rates.

From (3), it can be determined that the risk-neutral density of the conditional recovery rate is given by:

fQ[w̃]≡ U ′ [W0− (1− w̃)F]× f P[w̃]R 1
0 U ′ [W0− (1− w̃)F] f P[w̃]dw̃

, (6)

which connects the risk-neutral recovery density to the physical counterpart and the degree of risk aversion.

Absent risk aversion, equation (6) shows that fQ[w̃] = f P[w̃], so that the risk-neutral and physical densities

coincide. The next proposition proposes a relationship between the expected recovery rates under the

risk-neutral and the physical probability measures.

Proposition 1 Consider the risk-neutral expected recovery rate:

EQ{w̃} ≡
Z 1

0
w̃ fQ[w̃]dw̃ =

Z 1

0
w̃

(
U ′ [W0− (1− w̃)F] f P[w̃]R 1

0 U ′ [W0− (1− w̃)F] f P[w̃]dw̃

)
dw̃. (7)
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The risk-neutral expected recovery rate is less than the physical expected recovery rate, EP{w̃},

EQ{w̃} ≤ EP{w̃} (8)

since
R 1

0 w̃U ′ [W0− (1− w̃)F] f P[w̃]dw̃−
(R 1

0 w̃ f P[w̃]dw̃
)(R 1

0 U ′ [W0− (1− w̃)F] f P[w̃]dw̃
)

=

Cov(w̃,U ′ [W0− (1− w̃)F])≤ 0, for all concave counterparty utility functions.

From the perspective of default risk modeling, the central result from Proposition 1 is that the risk-

neutral expected recovery rate is generally lower than the physical recovery rate. Suppose the counter-

party utility function belongs to the constant absolute risk aversion class with risk aversion γ. In this caseR 1
0 w̃ fQ[w̃]dw̃ <

R 1
0 w̃ f P[w̃]dw̃. This result arises since,

∂EQ{w̃}
∂γ

∣∣∣
γ=0

= −
Z 1

0
w̃ (W0−F+F w̃) f P[w̃]dw̃+EP{w̃}

Z 1

0
(W0−F+F w̃) f P[w̃]dw̃,

= −F
(Z 1

0
w̃2 f P[w̃]dw̃−

(Z 1

0
w̃ f P[w̃]dw̃

)2
)

=−F×Var[w̃] < 0, (9)

and the two expected recovery rates are equal when γ = 0. When combined with (4), equations (8) and (9)

reveal that the impact of risk aversion is to both increase risk-neutral default probabilities and simultane-

ously lower risk-neutral expected recovery rates. Consequently it is unjustified to employ market implied

recovery rates as forecasts of expected recoveries without adjusting for risk aversion.

It can be shown that firms with more uncertain or left-skewed physical recovery densities are likely to

experience greater divergence between the risk-neutral and physical recovery rates. For details on these

higher moment connections and ways to generalize to a broader family of marginal utilities, the reader

is referred to Bakshi, Kapadia, and Madan (2003). Proposition 1 has implications for extracting physical

recovery information from market-based studies.
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2. Recovery in Default, and Defaultable Debt Modeling

This section presents the necessary framework for pricing defaultable coupon bonds for a broad class

of recovery definitions. These pricing results hold for a wide specification of processes describing the

evolution of the recovery rate, the default probability and the interest rate. The primary content is the

empirical assessment of recovery concepts with the theoretical framework supportive of the empirical work.

A. Defaultable Debt Pricing under Stochastic Recovery Rates

To address theoretical and empirical issues, we appeal to the default risk models presented in Duffie and

Singleton (1999), Jarrow and Turnbull (1995), Lando (1998), and Longstaff, Mithal, and Neis (2005). For

the case of defaultable coupon bonds and random recovery, its price, H(t,T ), is:

H(t,T ) = EQt
{Z T

t
exp

(
−
Z u

t
[r(s)+h(s)]ds

)
× c(u)du

}
+ EQt

{
exp

(
−
Z T

t
[r(s)+h(s)]ds

)}
×F

+ EQt
{Z T

t
exp

(
−
Z u

t
[r(s)+h(s)]ds

)
× y(u)×h(u)du

}
, (10)

where,

F is the promised face value of the defaultable bond maturing at date T, and {c(u) : u > t} is the

promised continuous-coupon payment;

EQt {.} represents conditional expectation under the risk-neutral probability measure Q and r(t)

is the economy-wide spot interest rate;

y(u) is the recovery payout in the event of default and h(u) is the hazard rate. Typically, the

recovery payout y(u) is significantly below remaining promised payments.

When recovery payout is positive, the defaultable bond price has three distinct components. The first

conditional expectation accounts for the receipt of coupons prior to default and the second term is due

to the promised face value in the absence of default. The last integral determines the value of the single
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recovery payout if the firm defaults. This conditional expectation involves some novelties arising from the

product of recovery and hazard rate. Intuitively the underlying payoff embodies recovery with probability

h(u)du in the entire no-prior default time-domain. The discounting factor involves the sum of the interest

rate and the hazard rate.

Even though not emphasized, the primitive modeling variables h(u), y(u) and r(u) can all be functions

of the state of the economy. For example, the hazard rate h(u) can exhibit complex dependencies on

systematic as well as firm-specific factors. As in Duffie and Singleton (1999), Lando (1998), Longstaff,

Mithal, and Neis (2005), Chen, Cheng, and Wu (2005), and Carr and Wu (2005) equation (10) provides an

internally consistent framework to jointly model default risk and recovery payout.

While modeling the defaultable debt price in (10), three assumptions are typically made about recovery

payout in default:

1. Recovery payout is a fraction of the face value:

y(u) = w(u)×F. (11)

This recovery assumption is conceptually straightforward. When w(u)≡ w0, 0≤ w0 ≤ 1, the recov-

ery payout is a constant proportion of the promised face value (Duffie (1999), Duffie and Singleton

(1999) and Lando (1998)). For this reason, we refer to this model as the recovery of face value

model (hereby, the RFV model as in Duffie and Singleton (1999)).

2. Recovery payout is the fraction of the present value of the face:

y(u) = w(u)×B(u,T )×F, (12)

where B(u,T ) = EQu
{

exp
(
−R T

u r(s)ds
)}

is the time-u price of a default-free discount bond with

maturity date T . This class of recovery payout is equivalent to the assumption that recovery is a

fraction of the price of a treasury bond with the face value F and maturity T (see Longstaff and
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Schwartz (1995), Jarrow and Turnbull (1995) and Collin-Dufresne and Goldstein (2001)). We will

refer to this model as the recovery of treasury model (hereby, the RT model).

3. Recovery payout is a fraction of the pre-default debt value:

y(u) = w(u)×H(u−,T ). (13)

which is the RMV model of Duffie and Singleton (1999). In this model, the impact of recovery is

subsumed within the defaultable discount rate.2

Several observations are in order about recovery conventions. One, the first two models assume no

recovery of the unpaid coupons. At first glance, equations (11) and (12) can be seen as different ways of

defining recovery rate w(u) given the process for recovery y(u). As mentioned also in Jarrow and Turnbull

(1995), Longstaff and Schwartz (1995) and Duffie and Singleton (1999), the recovery definition (12) is

relatively more complex and requires the knowledge of the term structure of default-free interest rates. If

the process for recovery y(u) is given, the definitions (11) and (12) have no pricing implications. However,

the constructs (11) and (12) assume economic content when they are employed as building blocks for

modeling the recovery payout y(u).

While recovery rates may be of second-order consideration for high-rated corporate bonds, they are

crucial determinants of bond values and yields in the default sensitive high-yield debt market. Existing

evidence appears to suggest that default probabilities and recoveries are inversely related: the recovery

payout tends to be low when actual defaults rise and the reverse (Altman (2001) and Altman, Brady, Resti,

and Sironi (2004)). However, in the limiting case of no default risk (i.e., treasuries), the recovery rates

2See, among others, the empirical applications and insights in Bakshi, Madan, and Zhang (2006), Collin-Dufresne, Goldstein,
and Martin (2001), Cremers, Driessen, Maenhout, and Weinbaum (2004), Duffee (1999), Duffie and Singleton (1997), Elton,
Gruber, Agrawal, and Mann (2001), Ericsson, Jacobs, and Oviedo-Helfenberger (2004), Ericsson and Renault (2005), He (2000),
Janosi, Jarrow, and Yildirim (2002), Liu, Longstaff, and Mandell (2006), Longstaff, Mithal, and Neis (2005), Pan and Singleton
(2005), and Zhu, Zhang, and Zhou (2005). The Duffie-Singleton framework has become an integral part of credit risk related
research. A related strand of research includes Das (1995), Das and Tufano (1996), Duffie, Saita, and Wang (2006), Das, Duffie,
Kapadia, and Saita (2006).
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become irrelevant. While easily relaxed, our recovery conventions assert that bonds by the same issuer

have identical recovery rates regardless of their maturity.

B. Characterizing Defaultable Bond Prices

In order to learn about recovery rates from the market bond prices, we need to validate the specific bond

pricing model that arises from equation (10) when we adopt the recovery assumptions (11)-(12). In this

subsection we outline a sufficiently wide framework under which equation (10), when combined with

assumptions (11)-(12), is analytically tractable. Define the vector, X(t) ≡ (r(t),h(t),w(t), log(B(t,T )))′

and assume that the X(t) dynamics is governed by a Markov-Ito process:

dX(t) = µ[X(t), t]dt +σ[X(t), t]dω(t), (14)

where the drift, µ[X(t), t], is a vector of expected instantaneous changes in X(t) and the diffusion, σ[X , t] is

a full-rank local covariance matrix between changes in the (vector) standard Brownian motion dω(t).

To solve the relevant conditional expectations in (10) for the RFV model and the RT model (i.e., the

recovery payout assumptions in (11)-(12)), define the characteristic function of the future uncertainty ν≡

(
R u

t [r(s)+h(s)]ds,h(u),w(u), log(B(u,T ))), with density q(ν) (see Bakshi and Madan (2000) and Duffie,

Pan, and Singleton (2000)):

J (t,u;φ,ϕ,υ) ≡ EQt

{
exp

(
−
Z u

t
[r(s)+h(s)]ds+ iφh(u)+ iϕw(u)+ iυ log(B(u,T ))

)}
, (15)

=
Z

exp
(
−
Z u

t
[r(s)+h(s)]ds+ iφh(u)+ iϕw(u)+ iυ log(B(u,T )

)
q(ν)dν,

where φ, ϕ and υ are some transform parameters, i =
√−1 and the transforms parameter for the first

uncertainty
R u

t [r(s) + h(s)]ds has been set at i. With this substitution for the first transform parameter,

the characteristic function, J(t,u;φ,ϕ,υ), is the time-t price of a hypothetical defaultable claim that pays

exp(iφh(u)+ iϕw(u)+ iυ log(B(u,T )) at time u. J(t,u;φ,ϕ,υ) satisfies 1
2 trace[σσ′JXX ] + µJX + Jt −
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(r +h) J = 0, subject to the boundary condition: J(u,u) = exp(iφh(u)+ iϕw(u)+ iυ log(B(u,T )). We

now present a correspondence between the characteristic function J(t,u) and defaultable bond prices.

Proposition 2 Suppose the characteristic function, J(t,u), is analytically known by solving the conditional

expectation (15) or the partial differential equation. With recovery assumptions (11)-(12), we have:

1. For the class of recovery rates displayed in (11), the defaultable coupon bond price can be obtained

from the characteristic function (15) as follows:

H(t,T ) =
Z T

t
J(t,u;0,0,0)c(u)du+ J(t,T ;0,0,0)×F−F

Z T

t
Jφϕ(t,u;0,0,0)du, (16)

where Jφϕ(t,u;0,0,0) denotes the second-order partial derivative of the characteristic function with

respect to φ and ϕ, and evaluated at φ = 0, ϕ = 0 and υ = 0.

2. For the recovery rate considered in (12), the defaultable coupon bond price is,

H(t,T ) =
Z T

t
J(t,u;0,0,0)c(u)du+ J(t,T ;0,0,0)×F−F

Z T

t
Jφϕ(t,u;0,0,−i)du, (17)

where Jφϕ(t,u;0,0,−i) is now evaluated at φ = 0, ϕ = 0 and υ =−i.

In (16) and (17), each defaultable coupon bond price component is obtained from the characteristic

function by combining the operations of differentiation and/or evaluation.

The characteristic function synthesizes the valuation problem in (10). Of particular note is the use

of second-order partial derivative of the characteristic function with respect to φ and ϕ that renders the

analytical tractability of the third term in (10). Additionally, we observe that on account of the second-order

cross-partial derivative in equations (16) and (17) that closed-form expressions for this final expectation

would typically be hard to conjecture even under simple parameterizations of r(t), h(t) and w(t).
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Comparing the results in Proposition 2 with the RMV model of Duffie and Singleton (1999), several

fundamental differences emerge from the perspective of modeling debt prices and inferring recovery rates.

Recall that in the Duffie-Singleton model

H(t,T ) = EQt

{Z T

t
exp

(
−
Z u

t
R(s)ds

)
c(u)du+F× exp

(
−
Z T

t
R(s)ds

)}
. (18)

Although the RMV model is flexible in modeling credit spreads via modeling the defaultable discount rate

R(s)≡ r(s)+(1−w(s))h(s), it is impossible to empirically differentiate the effect of recovery and hazard

rates. In contrast, the recovery conventions (11)-(12) lead to identifiable impacts on credit spreads. Hence

the market expectation of recovery rates can be inverted from the term structure of credit spreads.

Notice that even though recovery and hazard rate appear multiplicatively in equation (10), it is the

presence of the discounted face value that differentiates the impacts of hazard rate and recovery. One may

view the second term (i.e., discounted face) as identifying the hazard rate leaving the recovery rate to be

identified by the term that discounts payment on default. The ability to differentiate the impacts of recovery

rates and hazard rates is especially useful in pricing and hedging credit derivatives that are contingent on the

default event and/or recovery levels given default. Therefore, the general recovery formulations presented

here are critical to wider applications in the field of credit risk.

While there is overlap with respect to RFV model with Duffie and Singleton (1999) and Duffie, Pan,

and Singleton (2000), the proposition also presents in complete the RT model that the Duffie and Single-

ton (1999) paper puts aside as computationally burdensome especially for stochastic recovery (page 701,

second paragraph).

To illustrate the tractability of the approach outlined in Proposition 2, we consider three specifications

for the recovery process. First, suppose that recovery rates are independent of the interest rate and the

hazard rate. For example, one may write the recovery rate as w(u) = 1−e−z̃, z̃ ∈ [0,∞] where z̃ is indepen-
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dently and identically gamma-distributed with parameters α and β (with mean α/β and variance α/β2).

Under assumption (12) and the independence of recovery, equation (17) of Proposition 2 takes the form:

H(t,T ) =
Z T

t
J(t,u;0,0,0)c(u)du+ J(t,T ;0,0,0)×F−F×

(
β

1+β

)α Z T

t
i Jφ(t,u;0,0,−i)du, (19)

where Jφ(t,u;0,0,−i) is the first-order partial derivative of the characteristic function with respect to φ

evaluated at φ = 0 and υ = −i. In this parametric case, α and β are not separately identified and it is just

the expected recovery that could be identified.

The previous formulation assumes that the recovery rates are unrelated to the underlying hazard rate.

However, a little reflection is suggestive of dependencies in that hazard rates near zero should be associated

with full recovery. Equally relevant is the situation of large hazard rates when default is likely. But when

default is likely, one would expect the recovery rates to be low. Therefore, one might model w(u) in any

of the definitions of recovery as functionally related to the hazard rate h(u), whereby we may specify

w(u) = Ψ[h(u)]. Barring extreme counterexamples, some desirable properties of the function Ψ[.] are that

Ψ[0] = 1 while Ψ[∞] = 0. We also expect that Ψ[h] be a decreasing function of the hazard rate. A wide

class of such functions is the collection of completely monotone functions defined as Laplace transform of

a positive function, f [z], on the positive half line, or that

w(u) = Ψ[h(u)] =
Z ∞

0
e−zh(u) f [z]dz. (20)

The condition Ψ[0] = 1 imposes the further restriction that f [z] be a (risk-neutral) density on the positive

half line. A robust two parameter family of such densities is again the gamma density so that

Ψ[h(u)] =
Z ∞

0
e−zh(u) f [z]dz =

(
β

β+h(u)

)α
(21)
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since f [z] = βα zα−1 e−βz

Γ(α) , and Γ(.) is the mathematical gamma function. Thus, in this family of recovery

rates, the counterpart to (17) is of the form:

H(t,T ) =
Z T

t
J(t,u;0,0,0)c(u)du+ J(t,T ;0,0,0)×F−F

Z ∞

0
f [z]dz

Z T

t
Jφ(t,u; iz,0,−i)du. (22)

Therefore, even when a closed-form solution for the characteristic function is available, one may have to

use Gauss-Laguerre quadrature to replace the integral with respect to z by a finite sum, an extension we

intent to pursue in the future. Unlike equation (19), the impact of recovery parameters α and β on debt

prices of different maturities is differentiated on account of the stochastic evolution of the hazard rate. This

potentially permits the identification and estimation of the recovery parameters from the bond prices.

Recovery often occurs at a random time after default which is a double-stopping time problem. To

describe how this post-default recovery case can be accommodated within the framework of Proposition 2,

define another stopping time χ∗(t) > χ(t) where χ(t) is the default time process defined in Section 1.1, and

χ∗(t) is the recovery time process. The hazard rate corresponding to the recovery stopping time is χ(u−)×

(1−χ∗(u−))× h∗(u), for default conditional recovery hazard rate h∗(u). Notice that the combined term

is zero until the occurrence of default; after default, the recovery hazard rate is positive until the recovery

time. The generic third term in (10) should then be modified as (ignoring discounting for now): EQ
t
R T

t (1−

χ(u−))dχ(u)
R T

u (1− χ∗(u−))y(s)dχ∗(s), to account for recovery at a random time after default. Under

suitable assumptions, this double-stopping time problem reduces to evaluating the conditional expectation:

EQ
t

{Z T

t
exp

(
−
Z u

t
[r(v)+h(v)]dv

)
h(u)

Z T

u
exp

(
−
Z s

u
[r(a)+h∗(a)]da

)
y(s)×h∗(s)dsdu

}
(23)

with the first two terms remaining the same as in (10). This model is considerably more complex and

involves default conditional recovery hazard rate modeling. With appropriate modifications to the charac-

teristic function (15), one can develop defaultable bond prices for both the RFV model and the RT model.
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3. A Class of Closed-Form Models of Defaultable Debt

Building on Proposition 2, this section presents analytical expressions for the price of defaultable coupon

bonds. Our goal is to address the economic implications of recovery functions (11)-(12). We assume that

the recovery rate is related to the underlying hazard rate as,

w(u) = w0 +w1 e−h(u). (24)

We may note that as h → 0, w → w0 + w1, and h → ∞, w → w0. Thus, we require w0 ≥ 0, w1 ≥ 0 and

0≤ w0 +w1 ≤ 1. The resulting closed-form models are the basis for the later empirical application.

Consistent with extant empirical evidence, recovery is negatively related to default probability. That is,

∂w(u)
∂h(u) =−w1e−h(u) ≤ 0 meaning that distress can diminish the ability of the borrower to pay its creditors in

the event of default (see also equation (6)).

Following Duffie and Singleton (1997), Duffie and Singleton (1999), Duffee (1999), Longstaff, Mithal,

and Neis (2005), and Bakshi, Madan, and Zhang (2006), we make the assumption that the hazard rate is

linear in the short interest rate (under the risk-neutral measure):

h(t) = Λ0 +Λ1 r(t), dr(t) = κ(θ− r(t))dt + σ
√

r(t)dw(t), (25)

where Λ0 > 0. The parameter Λ1 reflects the correlation between the interest rate and the hazard rate. Al-

though firm-specific variables can be incorporated into (25), the empirical investigation of Bakshi, Madan,

and Zhang (2006) has shown that this class of hazard rate functions captures the first-order effect of default.

Since the hazard rate and the recovery rate are both a function of the short interest rate, we specialize

the characteristic function in equation (15) to the following:

J(t,u;φ,υ) ≡ EQt

{
exp

(
iφ
Z u

t
r(s)ds+ iυr(u)

)}
= exp [Y (t,u;φ,υ)−Z(t,u;φ,υ)× r(t) ] (26)
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where defining γ(φ)≡
√

κ2−2 iφσ2, and noting that

Y (t,u;φ,υ) =
2κθ
σ2 log


 γ exp

(
κ(u−t)

2

)

γ cosh( γ(u−t)
2 )+(κ− iυσ2)sinh( γ(u−t)

2 )


 , and, (27)

Z(t,u;φ,υ) =
iυγ coth( γ(u−t)

2 )− iυκ−2iφ

γ coth( γ(u−t)
2 )+κ− iυσ2

. (28)

Given the solution (26), the discount bond price in (12) is then B(u,T ) = J(u,T ; i,0).

Proposition 3 Let the recovery rate be as displayed in (24) and the hazard rate obey the structure given

in (25). The following pricing results are then obtained by combining the characteristic function (26) with

equations (16) and (17) of Proposition 2:

(i) For the RFV model with recovery convention (11), the defaultable coupon bond price is:

H(t,T ) =
Z T

t
e−Λ0(u−t)× J(t,u; i(1+Λ1),0)× c(u)du+ e−Λ0(T−t) J(t,T ; i(1+Λ1),0)×F

+ Fw0 Λ0

Z T

t
e−Λ0(u−t)× J(t,u; i(1+Λ1),0)du− iFw0 Λ1

Z T

t
e−Λ0(u−t)× Jυ(t,u; i(1+Λ1),0)du

+ Fw1 Λ0 e−Λ0

Z T

t
e−Λ0(u−t)× J(t,u; i(1+Λ1), iΛ1)du

− iFw1 Λ1 e−Λ0

Z T

t
e−Λ0(u−t)× Jυ(t,u; i(1+Λ1), iΛ1)du, (29)

where Jυ(t,u;φ,υ) is the partial derivative of the characteristic function (26) with respect to υ.

(ii) For the RT model with recovery convention (12), the defaultable coupon bond price is:

H(t,T ) =
Z T

t
e−Λ0(u−t)× J(t,u; i(1+Λ1),0)× c(u)du+ e−Λ0(T−t) J(t,T ; i(1+Λ1),0)×F

+ Fw0 Λ0

Z T

t
e−Λ0(u−t)× J(t,u; i(1+Λ1),0)× J(u,T ; i,0)du

− iFw0 Λ1

Z T

t
e−Λ0(u−t)× Jυ(t,u; i(1+Λ1),0)× J(u,T ; i,0)du

+ Fw1 Λ0 e−Λ0

Z T

t
e−Λ0(u−t)× J(t,u; i(1+Λ1), iΛ1)× J(u,T ; i,0)du

− iFw1 Λ1 e−Λ0

Z T

t
e−Λ0(u−t)× Jυ(t,u; i(1+Λ1), iΛ1)× J(u,T ; i,0)du. (30)
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In (29) and (30), the partial derivative Jυ(t,u;φ,υ) can be analytically computed as:

Jυ(t,u;φ,υ) = exp [Y (t,u;φ,υ)−Z(t,u;φ,υ)× r(t)]
{

∂Y (t,u;φ,υ)
∂υ

− ∂Z(t,u;φ,υ)
∂υ

× r(t)
}

. (31)

The expressions for ∂Y (t,u;φ,υ)
∂υ and ∂Z(t,u;φ,υ)

∂υ are presented in (38) and (39) of the Appendix.

Proposition 3 derives the solution for defaultable coupon bonds under stochastic recovery rates, re-

spectively for the RFV model and the RT model. As equations (29) and (30) demonstrate, the pricing

solution can be complex and needs the evaluation of several terms even for the single-factor interest rate

case. For this reason (see also Longstaff, Mithal, and Neis (2005) and Pan and Singleton (2005)), we have

not empirically pursued a multi-factor extension although its characteristic function can be derived for a

large family of multi-factor interest rate (hazard rate) models. In the Appendix, we present an example

where the hazard rate has a three-factor structure and the interest rate is driven by a two-factor structure.

The details are available in (40)-(49) of the Appendix.

Each bond model incorporates a flexible correlation structure between the hazard rate, the interest rate,

and the recovery rate. As noted in Duffie and Singleton (1999), the burden of analytically computing

defaultable bond prices can be substantial especially for the RT model; by presenting the characteristic

function of the remaining uncertainty, we have resolved this analytical intractability. Duffie and Singleton

(1999) use a four-factor model in comparing RMV and RFV models. It is important to note that there is no

empirical or market test involved in this exercise but a comparison of analytical models with one another.

Our intent is to provide empirical test that compare recovery concepts.

In each model, the role of recovery rate is captured by the pricing terms involving w0 and w1. The

constant recovery rate assumption can be obtained by setting w1 ≡ 0 in (24). Accordingly, the last two

terms in the pricing formula (29) and (30) are set equal to zero. Although tedious, the partial derivative

of the defaultable bond price with respect to the interest rate and the recovery rate parameters can be
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determined analytically for a large parametric model class. These sensitivities can be used in hedging

interest rate and recovery rate risks.

With the convenience of the solutions (29) and (30), the yield-to-maturity on the defaultable coupon

bond, R(t,T ), can be determined by solving the non-linear equation:

H(t,T )−
Z T

t
c(s) exp [−R(t,T )(s− t)] ds−F exp [−R(t,T )(T − t)] = 0, (32)

which now potentially takes into account both recovery and default considerations.

In the remainder of the paper, we implement parametric defaultable bond models using a sample of

BBB-rated bonds. Our investigation provides several new perspectives about recovery and default:

1. Which recovery model is better supported by the market debt data? That is, we evaluate the out-of-

sample pricing implications of the RFV, the RT, and the RMV models;

2. What is the quality of market implied recovery rates embedded in individual bond prices? In partic-

ular, we assess the stability of the implied recovery rates.

In discussing possible model misspecifications and related recovery estimates, we take the stand that

the market fairly prices defaultable coupon bonds.

4. Description of BBB-Rated Corporate Bond Sample

We investigate model implications using coupon bonds rated BBB by Standard and Poor’s. High grade are

omitted as the impact of recovery payout is relatively small on higher-rated corporate bonds and since most

high-rate bonds are callable. Corporate coupon bond data and the treasury STRIPS prices are obtained

from Lehman Brothers Fixed Income Database. For each issuing firm, the database contains entries on

the month-end flat price, the accrued interest, the maturity date, the annual coupon rate, and the yield-to-

maturity. Trader bid quotes on treasury STRIPS are used to estimate the risk-neutralized parameters of
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the interest rate process. The STRIPS data contains 20,173 quotes. Since there are few straight corporate

bonds prior to 1989, our bond sample covers the nine-year period from January 1989 through March 1998.

In constructing the bond sample, matrix quotes are discarded. Two, only bond issues with maturity

longer than one-year are retained due to their higher liquidity. To facilitate estimation, we only consider

firms that have at least four bond issues outstanding per month. We also confine our empirical analysis to

bonds that pay semi-annual coupons (only a small number of bonds pay coupons at frequencies other than

semi-annual). Lastly, we focus on a sample of 25 BBB-rated straight bonds (to economize on space). The

resulting bond sample has 12,228 observations.

Three-month treasury bill rate is adopted as the proxy for the short interest rate r(t). Corporate bonds

with remaining maturity between 1 and 5 years are classified as short-term. Similarly bonds with maturity

between 5 and 10 (higher than 10) years are classified as medium-term (long-term). None of the debt issues

in our sample are secured by collateral.

5. Estimation of Debt Models and Results

Each defaultable bond pricing model requires three sets of parameter estimates: (1) the (risk-neutral) in-

terest rate parameters (κ, θ and σ), (2) the hazard rate parameters (Λ0 and Λ1) and (3) the recovery rate

parameters (w0 and w1). The hazard and recovery rate parameters are unique to each firm while κ, θ and σ

are economy-wide.

Consider the estimation of the interest rate parameters. In this estimation procedure, we first solve for

the parameters that minimize the root-mean-squared percentage pricing errors (one for each month t). The

objective function is:

min
κ,θ,σ

√√√√ 1
N

N

∑
n=1

(
B(t,Tn)−B(t,Tn)

B(t,Tn)

)2

∀t, (33)
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where B(t,T ) is the market price of the treasury STRIPS and B(t,T ) is the corresponding model price

(given by the Cox-Ingersoll-Ross model). To account for time-variation in the risk premia, we have al-

lowed the interest rate parameters to vary from one month to the next. This means that we have estimated

the parameter time-series {κ(t),θ(t),σ(t) : t = 1, . . . ,T}. Our estimation procedure results in the following

average parameter values for the interest rate process: κ = 0.48, θ = 9.4% and σ = 0.31. These estimates

imply a long-run interest rate mean of 9.4% and a long-run interest rate volatility of about 9.5%. Further-

more, the parameter values are in-line with such well-known counterparts as Chan, Karolyi, Longstaff, and

Sanders (1992) and Pearson and Sun (1994). Suggestive of parameter stability, the coefficients of variation

are each estimated to be lower than 0.5. With an average root-mean-squared error of 1.68%, the square-root

model (25) provides reasonably low in-sample errors when fitted to the term structure of interest rates.

The estimation of Λ0, Λ1, w0 and w1 is admittedly more cumbersome. Consider the recovery conven-

tion (12) which posits recovery payout to be a fraction of the discounted face value. Let H(t,T ) be the

theoretical RT model bond price (as displayed in (30)) and let H(t,T ) be the corresponding market price.

Substituting the estimated interest rate parameters into the RT model price, we solve for the remaining

structural parameters that fit the individual bond prices (the implicit market valuation process) as closely

as the model structure would allow:

RMSE(t)≡ min
Λ0,Λ1,w0,w1

√√√√ 1
N

N

∑
n=1

(
H(t,Tn)−H(t,Tn)

H(t,Tn)

)2

∀t. (34)

For greater parameter accuracy, the minimization (34) is done only once each quarter by combining all

bonds within that quarter (the available monthly cross-section is not sufficiently large). For instance, the

first quarterly estimation employs all corporate coupon bonds available in April, May and June of 1989.

Finally, the above optimization procedure is repeated for every firm, thereby yielding a (firm-specific)

quarterly time-series of
{

Λ0(t),Λ1(t),w0(t),w1(t) : t = 1, . . . , T
4

}
. In order to afford each model an equal

treatment, the same procedure is applied in estimating the RFV model (and the RMV model).
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Table 1 reports the parameter estimates for the RFV model and the RT model (in Panels A and B

respectively). An interesting empirical finding is that the estimate of the hazard rate parameter Λ1 is

negative (across all the 25 firms). Specifically from Panel B it can be observed that the mean Λ1 estimate

is -0.145 for Delta Airlines, -0.132 for K-Mart and -0.14 across all the 25 firms (see also Duffee (1999)).

Economically a Λ1 < 0 implies a negative co-movement between the hazard rate and the interest rate. In a

market in which interest rates are trending upwards, one would expect Λ1 to be negative as higher interest

rates tend to increase the earning capacity relative to the cost of debt. The reverse logic applies to periods of

declining interest rates: falling interest rates would cause higher default probabilities on account of lower

earnings capacity relative to debt cost.

Regardless of the model, Panels A and B of Table 1 indicate that the sample estimate of Λ0 are positive.

This is essential to guarantee positive hazard rates especially since Λ1 is negative. For the RT model, its

reported value ranges between 1.6% to 3.9% with an average Λ0 of 2.6%. The linear specification of hazard

rates is accordingly positive for interest rates below 18.57%. Additionally, for each firm and each model,

the estimated hazard rates are strictly positive. Comparing the hazard rate estimates, we can see that Λ0

is systematically higher for the RFV model, while the Λ1 estimate from the RT model is slightly more

negative. This means that the hazard rate estimate for the RFV model is generally higher than that for the

RT model. The documented difference in the hazard rate estimates is a potential source of the differential

pricing between the two models.

The recovery rate parameters of equation (24) are also consistent with theoretical predictions. Each

for the RFV model and the RT model, the parameters w0 and w1 are strictly positive. Furthermore, as

hypothesized, w0 + w1 is strictly less than unity. Overall, Table 1 suggests considerable cross-sectional

variations in w0 and w1. This finding may suggest that bond prices contain information about expected

recovery levels. For the RFV model, the estimate of w0 varies between 0.135 in the case of K-Mart to

0.248 for Enron. The respective average w0 and w1 is 0.24 and 0.245. These estimates imply that a 4%

worsening of the hazard rate is associated with a 1% decline in the recovery rates. Irrespective of the firm,
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the estimated w0 and w1 appear higher for the RT model. The discrepancy in the recovery rate parameters

are also suggestive of differential pricing and hedging implications between the two recovery conventions.

Based on the RMSE and the in-sample absolute dollar pricing errors (denoted DPE), we may draw the

conclusion that the recovery of treasury model fits the bond data better than its undiscounted counterpart.

To illustrate this point, take Delta Airlines as an example. The RFV model has an average RMSE of 2.05%

and a DPE of $1.93 (per $100 par value), which is larger than the RMSE of 1.57% and $1.41 obtained with

the RT model. Table 1 verifies that in-sample error measures are larger for the RFV model than for the RT

model for virtually every firm.

In summary, this subsection points to three empirical findings. First, our single-factor parameterization

of the hazard rate, the interest rate, and the recovery rates result in theoretical defaultable bond prices that

reasonably match market bond prices (e.g., Longstaff, Mithal, and Neis (2005)). Second, the recovery

assumption (12) appears to provide a better in-sample fit than assumption (11). Finally, the estimates of

recovery and hazard rates are not at odds with theory. Our empirical methods appear robust in capturing

the first-order effect of recovery embedded in market bond prices.

6. What Concept of Recovery Does the Data Support?

While the in-sample comparison among models is an important guideline for selecting valuation models

for marking-to-market purposes, a more stringent test is whether one model outperforms another based

on out-of-sample pricing-error measures. To construct such measures, we rely on parameters estimated

from bond prices in the previous three months and use them to compute the model determined prices in the

following three months. The out-of-sample prices in month t (for the RFV and the RT models) are obtained

by substituting the prior-month treasury and prior-quarter default parameters and the current market interest

rate, in the bond formulas (29) and (30). Finally, subtracting the model determined bond price from the

market price produces the dollar pricing error series, or the market price normalized counterpart: the
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percentage pricing error series. Yield basis point errors are similarly constructed as the difference between

the market and the model determined yields (see equation (32)). For each out-of-sample yardstick, we

report the mean absolute error, the mean error and the standard deviation of the errors.

To put our results into perspective, Table 2 first contrasts the out-of-sample valuation implications of

RFV versus RT. Essentially our results affirm that the RT model has better out-of-sample performance

relative to the RFV model. There are several reasons supporting this conclusion. Let us start with the

pricing quality implicit in the yield basis point errors. The average absolute yield basis point errors for

the RT model is 24.10 bps compared to 28.88 bps for the RFV model (when averaged across all the 25

firms). Moreover, the lower overall dispersion of the yield basis point errors for the RT model. The average

across-firm standard deviation of the yield basis point errors is 27.03 bps with the RT model compared to

29.60 with the RFV model. In fact, the standard deviation of the yield basis point errors for the RT model

is lower across most firms. Similar conclusions can be drawn on the basis of mean yield basis point errors.

Dollar pricing errors confirm the superiority of the RT model from a different angle. Since the database

scales bond prices to have a par value of $100 the errors must be interpreted accordingly. Based on the

absolute dollar errors, the model difference is also economically significant: the pricing difference trans-

lates into $2200 for every $1 million notional. In view of the fact that it has lower absolute dollar pricing

errors for 23 out of 25 firms, the RT model consistently outperforms the RFV model. The lower standard

deviation of the dollar pricing errors again supports the broader argument that the RT model better tracks

market prices and is closer to the market’s valuation process.

The outperformance of the RT model over the RFV model is also statistically significant. To conduct

statistical tests, a representative error series is created by pooling the absolute errors across our bond sample

each month. The mean of the difference between the RFV model and the RT model errors, divided by

the standard error of the difference of the error series is t-distributed. The null hypothesis that the RFV

model’s absolute yield basis point errors are equivalent to those from the RT model is rejected with a t-

statistic of 7.49. When absolute percentage pricing errors are adopted as the benchmark, we find an equally
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strong rejection with a t-statistic of 9.27. Our evaluation establishes that the RT and the RFV models are

significantly different on both statistical and economic grounds.

Are our conclusions robust controlling for bond maturity? To address this concern, we sort our bond

sample into short-term, medium-term and long-term. Fixing maturity, we aggregate pricing errors across

available firms at each month and then in the time-series. Our assertion that the RT model is less misspeci-

fied is still valid. For instance, our results verify that for short-term bonds the average absolute yield basis

point errors for the RT model is 26.69 bps, compared to 34.83 bps with the RFV model (not reported in the

table). In the case of medium-term bonds, a likewise divergence is documented: the RT (RFV) model pro-

vides an average absolute yield basis point errors of 27.19 (32.55) bps. According to the t-tests discussed

earlier, the RFV model is still rejected in favor of the RT model (the minimum t-statistic across maturities

is 7.56).

We now compare the pricing quality of a version of the RMV model (Duffie-Singleton (1999)) with the

RT and the RFV models. In the RMV model price (18), we suppose that R(t) ≡ Λ∗0 + Λ∗1 r(t), where r(t)

obeys the square-root process displayed in (25). Estimating the parameters Λ∗0 and Λ∗1 for each firm, we

compute the out-of-sample pricing errors and the following average absolute pricing errors for the RMV

model:

Yield Basis Point Errors (in bps): All=28.60, Short=35.81, Medium=30.34.

Dollar Pricing Errors (in $): All=1.67, Short=0.97, Medium=1.70.

Comparing these numbers with the corresponding entries in Table 2, we can observe that the single-

factor version of the Duffie-Singleton model does worse than the RT model (the t-statistic for the yield

basis point errors is higher than 8.0). In addition, the RMV model is virtually indistinguishable from the

RFV model (with t-statistics below 2). The largest discrepancy between the various models emerges for

short-term bonds: the yield basis point errors for the RT model, the RFV model, and the RMV model are

respectively 26.99, 34.83, and 35.81 bps. For medium-term bonds, the yield basis point errors for the RFV
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model and the RMV model are 32.55 and 30.34 bps, which are also higher than the RT model’s 27.19 bps

(and statistically significant). In sum, the RT model is still a first-place performer.3

To further understand the differences and similarities between different recovery models, we imple-

mented the RFV and RT valuation models under the constant recovery case. Constraining w1 ≡ 0 in the

RT model (30), we find that the RT model continues to perform better than the RFV (with w1 ≡ 0 in (29))

and the RMV models.

However, a somewhat surprising result that emerges is that the pricing errors obtained from the sto-

chastic recovery rate are quantitatively similar to those obtained with w1 set to zero. This seemingly

contradictory result can be explained in two ways. First, since the models are estimated each quarter, it is

possible that by allowing w0 to fluctuate from one quarter to the next it implicitly accounts for the time-

variation in the recovery rates. In other words, the remaining structural parameters adjust internally so as

to bring the model price closer to the market’s valuation process as reflected in the market prices. The next

reason may be that the variation in individual recovery rates may not be so strongly correlated with de-

fault probabilities for BBB-rated bonds. Stronger pricing implications may surface when the time-varying

recovery rate model is applied to high-yield bonds.

To summarize, a significant finding from this part of the investigation is that debt data is more support-

ive of the RT model. This may be because the RT model recognizes time-value of money considerations;

its supposition that full recovery is made upon the payment of the face value of debt may be more closer to

truth in market valuation. Perhaps less plausibly so, the RFV model asserts that full recovery necessitates

the immediate payment of the face value at the default time. Therefore, one interpretation of the lesser

misspecification of the RT model is that the defaultable bonds are priced in such a way that the market

3The possible sources of the divergence between the RT and the RFV models warrants some remarks. First, we calculated
the model-implied default probabilities and found it to be systematically higher for the RFV model. For example, the average
default probability is 2.55% with the RFV model versus 1.94% for the RT model. If the RT model is closer to the market’s
valuation, then the RFV model appears to overestimate the default probability. Another difference arises due to recovery, which
is also overestimated with the RFV model. To be exact, the contribution of the final model pricing term in (10) is 3.53% (of the
market price) for the RT model compared to 5.74% with the RFV model. The better performance of the RT model can be possibly
attributable to a more accurate assessment of hazard and recovery rates.
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explicitly incorporates this type of recovery uncertainty in their intrinsic value calculations. As also argued

in Longstaff and Schwartz (1995), the recovery in the RT model may be consistent with typical reorganiza-

tions in which security holders receive new securities rather than cash for their original claims. Our results

validate that the market is not optimistic about immediate cash recovery in default.4

7. Market Implied Recovery Rates

Even when the RFV, the RT, and the RMV, models are comparable along the pricing dimension, under-

standing recovery rate estimates obtained from RFV and RT models is potentially important. As already

reasoned, model-specific recovery rates inverted from debt prices can serve as a benchmark for writing

claims contingent on recoveries. Are quantitative estimates of (risk-neutral) expected recovery rates in-line

with the historical evidence (adjusted for risk aversion)? Which recovery convention is better suited for

writing contingent claims? We investigate the stability of implied recovery rates.

Let us first elaborate on the contractual aspects of recovery associated with the RFV, the RT and the

RMV models. To do so, consider a generic bond with a $100 par value. Suppose only $40 is recovered in

the event of default (i.e., y(u)=$40 in equation (10)). According to the RFV model, the recovery rate, w(u),

can be measured in a straightforward manner and is 40%. In contrast, in the Duffie-Singleton definition of

recovery, the recovery rate requires the knowledge of the pre-default debt value either from market sources

or the model. Even when the RMV model is perfectly specified, the reliance on the pre-default debt value

renders this notion of recovery rate unattractive from contractual standpoints. The measurement of the

4One may additionally argue that if the underlying bond to be priced was a par bond and the market sought compensation
for all future coupons in present value terms for full recovery, then RFV model is the most appropriate candidate for modeling
recovery. This suggests another recovery definition

y(u) = w(u)×B(u,T )×F + w(u)
Z T

u
B(u,s)× c(s)ds,

which can be interpreted as recovery of outstanding value. The superiority of the RT model over the RFV model may just be a
reflection of low coupons in the sample for which RFV is clearly incorrect when recovery of outstanding value is the right answer,
and RT is the better approximation. From the perspective of the recovery of outstanding value model, both models may thus be
misspecified. As the pricing formula now needs a double numerical integration for the term involving remaining coupons, this
model is considerably more involved for actual implementation purposes. At a heuristic level, none of the bonds in our sample
have coupon rates that are small enough to be ignored.
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recovery rate in the RT model is relatively less cumbersome but still requires the specification of the yield

curve. Therefore, despite the relatively worse out-of-sample performance of the RFV model, it may yet be

an attractive choice to measure and manage recovery related risks.

To nonetheless provide an empirical comparison between the RFV and the RT models (the recovery rate

is unidentified in the RMV model), the expected recovery rates are backed-out from market bond prices as

follows. Focus on the RFV model where w(t) = w0 +w1 e−h(t) and h(t) = Λ0 +Λ1 r(t). The out-of-sample

implied recovery rate is then constructed by taking the prior-quarter estimates of w0, w1, Λ0 and Λ1, in

conjunction with the current market interest rate. Table 3 presents the mean, the standard deviation, the

maximum and the minimum expected recovery rates. The first point to note is that the RFV model and the

RT model provide plausible (risk-neutral) recovery rates that lie between zero and one. The second point

that deserves emphasis is that the two models imply different recovery rates. Take the case of Delta, where

the implicit average recovery rate is 44% with the RFV model; this departs substantially from 58.5% with

the RT model. Table 3 confirms that the average recovery rate is 48.5% for the RFV model compared to

56.7% with the RT model. Our empirical methodology is informative about expected recovery rates.

These implied estimates are broadly comparable to actual recovery rates. Even though not directly

comparable due to the impacts of risk aversion, the calculations of Altman (2001) shows that recoveries for

high-yield bonds for all seniorities has a weighted-average of $36.88 per $100 face value ($43.77 for senior

secured). Similarly, the recovery rates have averaged between 40% and 60% in Weiss (1990) for unsecured

debt. Potentially useful in managing recovery risk, our recovery estimates can be employed, among oth-

ers, to gauge which bonds are subject to lower recovery (within the same credit class). Moreover, these

estimates can be adopted as signals for changes in credit rating or setting capital adequacy requirements.

It must be recognized from (11) and (12) that the differences in the recovery rates for the RFV and the

RT model have information content on the arrival of default. For the same dollar recovery, y(u), notice

that ratio of the RFV recovery rate to the RT recovery rate is the present value of face divided by the face

value. At a heuristic level, one may think of this ratio as exp(−r(T − u)) where u represents the default
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time. For a fixed T , a higher (lower) ratio suggests earlier (distant) default time. Certainly one would

expect the recovery rate from the RFV model to be below those from the RT model and this is consistently

observed. From the recovery rate estimates in Table 3 and the average maturity displayed in Table 1, a

rough approximation indicates an expected arrival of default at 6% interest rate of around 10.97 years for

Delta Airlines (i.e., 15.72 - 1
0.06 log(0.440/0.585)) versus an early default time of 3.09 years for K-Mart.

For the entire sample, the relative recovery rate comparison is indicating a default-time of about 7.10 years.

Third, the estimates of the recovery rates appear more time-stable for the RFV model. We can draw

this inference by comparing the standard deviation of the recovery rates between the RFV model and the

RT model. One possible implication of the higher volatility of the RT model determined recovery rate is

that it may be a less desirable contracting choice for writing recovery rate related contingent claims. The

RFV convention may be preferable on grounds of simplicity and more reliable recovery estimates.

We should emphasize that market-implied recovery rates are impacted by risk aversion considerations

in the change of measure to risk-neutral, and physical assessments of recovery (as elaborated in Propo-

sition 1). Risk-neutral recoveries cross-sectionally are affected by possibly firm-specific differences in

counterparty risk aversion and firm-specific moments of the physical recovery density. For instance, it is

possible that firms with more left-skewed (physical) recovery densities may have their expected recoveries

discounted further. A properly specified risk-neutral recovery rate model may be the key to understanding

cross-sectional and time-series variations in credit spreads and market implied recovery rates.

8. Conclusions

Under the recommendations set forth by the Basle committee, market participants subject to credit risk

should not just evaluate the risk of default but also assess recovery if default occurs. Despite substantial

progress in modeling credit risk, existing debt models have only provided a minimal parameterization of

recovery. Even less appreciated is which recovery concept is appropriate in default modeling. Expected
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recovery is a crucial modeling element in applications ranging from high-yield bonds to sovereign bonds.

This paper has presented a framework for pricing defaultable securities under alternative recovery payout

definitions. If the recovery rates are misspecified then the default probabilities can get distorted. Recovery

rates now identifiable impacts on credit spreads. Hence some of these models can be employed to infer

market expectation of recovery levels embedded in the prices of debt instruments. These recovery conven-

tions are also attractive from the perspective of writing recovery contingent claims. Such claims can assist

in the efficient allocation of default risks across the economy.

When our parameterized defaultable debt models are tested using a sample of BBB-rated bonds, we

find that the recovery specification that relies on discounted face value provides a better fit to the data.

Introducing dimensions of time-value in the recovery payout to creditors is found to reduce out-of-sample

pricing errors relative to both a version of the Duffie-Singleton (1999) model and the recovery of face value

model. Finally, the average recovery rates implicit in defaultable coupon bonds are broadly consistent with

empirical studies on unsecured debt. For the purpose of designing recovery contingent claims, we note

that defining recovery as a proportion of face has substantially lower standard deviation for market implied

recovery rates. This paper models recovery and quantifies its impact on defaultable debt.
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Appendix: Proof of Proposition 3

We wish to prove the defaultable coupon bond valuation models (29)-(30). Guided by Proposition 2,

consider the characteristic function

J(t,u;φ,υ) ≡ EQt

{
exp

(
iφ
Z u

t
r(s)ds+ iυr(u)

)}
=
Z

exp
(

iφ
Z u

t
r(s)ds+ iυr(u)

)
q(ν)dν,

where q(ν) is the risk-neutral density ν ≡ (
R u

t r(s)ds,r(u)). With interest rate dynamics (25), the charac-

teristic function satisfies the partial differential equation:

1
2

Jrr σ2 r + Jr κ(θ− r)+ Jt + iφr J = 0 (35)

subject to the boundary condition J(u,u) = exp(iυr(u)). By direct substitution it can be verified that the

solution to (35) is given by exp[Y (t,u)−Z(t,u) × r(t)]. Solving the resulting Ricatti equations produces

the closed-form expressions for Y (t,u;φ,υ) and Z(t,u;φ,υ) displayed in (27) and (28) of the text.

Inserting h(u) = Λ0 +Λ1 r(u) and y(u) =
(
w0 +w1 e−h(u)

)×F into the pricing equation (10) results in

(30). In deriving each term in equation (30), we note that

∂J(t,u;φ,υ)
∂υ

=
Z

exp
(

iφ
Z u

t
r(s)ds+ iυr(u)

)
i r(u)q(ν)dν. (36)

Therefore,

∂J(t,u;φ,υ)
∂υ

= exp [Y (t,u;φ,υ)−Z(t,u;φ,υ)r(t)]
{

∂Y (t,u;φ,υ)
∂υ

− ∂Z(t,u;φ,υ)
∂υ

r(t)
}

. (37)

The required partial derivatives can be determined analytically as:

∂Y (t,u;φ,υ)
∂υ

=
2 iκθsinh( γ(u−t)

2 )

γ cosh( γ(u−t)
2 )+(κ− iυσ2) sinh( γ(u−t)

2 )
, (38)
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and,

∂Z(t,u;φ,υ)
∂υ

=
2φσ2 + iγ2 coth2( γ(u−t)

2 )− iκ2

(
γ coth( γ(u−t)

2 )+κ− iυσ2
)2 . (39)

Evaluating (37)-(39) at φ = i(1+Λ1), υ = 0 and υ = iΛ1 leads to the desired closed-form expressions. ¤

An Illustrative Multi-factor Defaultable Bond Valuation Model

In this example setting, we assume that (i) the short interest rate obeys a two-factor process and the

hazard rate obeys a three-factor process. We continue to maintain that recovery is of the type (24). For the

interest rate dynamics assume that

dr(t) = κr (m(t)− r(t))dt +σr dωr(t), (40)

dm(t) = κm (µm−m(t))dt +σm dωm(t), (41)

where m(t) represents the long-run stochastic mean interest rate and ωr and ωm are correlated standard

Brownian motions (Bakshi, Madan, and Zhang (2006) and Collin-Dufresne and Solnik (2001)). Let ρ j,k ≡

Covt (ω j,ωk) for any j and k. For the hazard rate we make the simplifying assumption that

h(t) = Λ0 + Λ1 r(t) +Λ2 m(t)+ Λ3 g(t), (42)

where g(t) is some firm-specific variable that is governed by an autonomous process, as in:

dg(t) = κg (µg−g(t))dt +σg dωg(t). (43)

The characteristic function of the remaining uncertainty is given by:

J(t,u− t;φ,υ)≡ EQt

{
exp

(
−
Z u

t
[r(s)+h(s)]ds+ iφr(u)+ iυg(u)

)}
. (44)
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We assert that

J(t,u− t;φ,υ) = exp [−Y (t,u)−Z(t,u)× r(t)−U(t,u)×m(t)−V (t,u)×g(t)] , (45)

where:

Z(t,u;φ,υ) ≡ −(iφ+ iυΛ1)e−κr (u−t) +
(1+Λ1)

κr

(
1− e−κr(u−t)

)
, (46)

U(t,u;φ,υ) ≡ −iυΛ2 e−κm(u−t) +
(1+Λ1 +Λ2)

κm

(
1− e−κm(u−t)

)
(47)

−(1+Λ1)+κr (iφ+ iυΛ1)
(κm−κr)

(
e−κr(u−t)− e−κm(u−t)

)
,

V (t,u;υ) ≡ −iυΛ3 e−κg (u−t) +
Λ3

κg

(
1− e−κg (u−t)

)
, (48)

and finally

Y (t,u;φ,υ) ≡ −iυΛ0 +Λ0(u− t)− 1
2

σ2
r

Z u

t
Z2(s)ds+κm µm

Z u

t
U(s)ds+κg µg

Z u

t
V (s)ds

−1
2

σ2
m

Z u

t
U2(s)ds− 1

2
σ2

g

Z u

t
V 2(s)ds−ρg,r σg σr

Z u

t
Z(s)V (s)ds

−ρm,r σm σr

Z u

t
Z(s)U(s)ds. (49)

The bond prices for the RFV and the RT model can now be obtained via Proposition 2 and Proposition 3,

and are in analytical closed-form. ¤
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Table 1: Parameter Estimates for the RFV Model and the RT Model

All parameters are obtained by minimizing the sum-of-squares percentage error between the market price and the
model determined price. Reported for each structural parameter is the mean, the standard deviation, the maximum
and the minimum. The respective averages across all 25 firms are reported under the heading “All 25 firms.” The
average and standard deviation of the mimimized root-mean-squared error is displayed in the row marked “RMSE.”
In-sample absolute dollar pricing errors are reported in the row marked DPE.

Panel A: RFV Model Panel B: RT Model
Recovery is y(u) = w(u)×F Recovery is y(u) = w(u)×B(u,T )×F

Delta Enron Fedex K-Mart Wells All 25 Delta Enron Fedex K-Mart Wells All 25
Fargo Firms Fargo Firms

Λ0 Mean 0.039 0.019 0.029 0.034 0.019 0.031 0.031 0.018 0.027 0.031 0.019 0.026
Std. 0.018 0.007 0.011 0.032 0.007 0.017 0.007 0.006 0.008 0.024 0.005 0.009
Max. 0.070 0.034 0.051 0.147 0.037 0.067 0.043 0.034 0.042 0.122 0.032 0.039
Min. 0.005 0.005 0.005 0.005 0.005 0.017 0.020 0.005 0.014 0.005 0.008 0.016

Λ1 Mean -0.159 -0.134 -0.087 -0.108 -0.128 -0.107 -0.145 -0.115 -0.132 -0.132 -0.132 -0.140
Std. 0.274 0.131 0.139 0.192 0.058 0.148 0.017 0.075 0.030 0.174 0.047 0.035
Max. 0.512 0.207 0.416 0.183 0.158 0.081 -0.107 0.152 -0.047 0.052 0.099 -0.115
Min. -0.900 -0.594 -0.143 -0.849 -0.143 -0.191 -0.184 -0.162 -0.224 -0.900 -0.148 -0.176

w0 Mean 0.217 0.248 0.255 0.135 0.235 0.240 0.289 0.311 0.291 0.289 0.266 0.279
Std. 0.080 0.024 0.050 0.068 0.010 0.057 0.120 0.092 0.094 0.148 0.044 0.074
Max. 0.448 0.366 0.433 0.266 0.244 0.316 0.479 0.482 0.480 0.478 0.479 0.325
Min. 0.075 0.234 0.235 0.075 0.195 0.135 0.070 0.251 0.075 0.070 0.250 0.237

w1 Mean 0.221 0.254 0.260 0.128 0.246 0.245 0.295 0.318 0.298 0.295 0.273 0.286
Std. 0.078 0.024 0.048 0.066 0.009 0.056 0.118 0.090 0.092 0.147 0.043 0.072
Max. 0.447 0.369 0.431 0.270 0.254 0.319 0.482 0.481 0.481 0.481 0.483 0.331
Min. 0.075 0.240 0.240 0.075 0.211 0.128 0.070 0.259 0.088 0.070 0.258 0.244

RMSE Mean 2.05 1.46 1.24 2.64 1.06 1.55 1.57 1.28 1.00 2.39 1.00 1.35
DPE Mean 1.93 1.26 1.01 2.06 0.94 1.31 1.41 1.03 0.82 1.80 0.88 1.11
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Table 2: Out-of-Sample Pricing Errors for the RFV and the RT Models

For each bond, we compute the (i) dollar pricing errors, (ii) the percentage pricing errors and (iii) the yield-basis point
errors. The dollar pricing errors are computed as the market price minus the model determined price; the percentage
pricing errors are dollar pricing errors normalized by the market price. Yield-to-maturity on each bond is computed
by solving 0 = H(t,T )− R T

t c(s) exp [−R(t,T )(s− t)] ds−F exp [−R(t,T )(T − t)], and the yield basis point errors
represent the difference between the market-determined-yield and the model-determined-yield. Displayed for each
error series is the (i) average absolute errors, (ii) the standard deviation, and (iii) the average error. The respective
entire sample averages are reported under “All 25 Firms.”

Panel A: RFV Model Panel B: RT Model
y(u) = w(u)×F y(u) = w(u)×B(u,T )×F

Delta Enron Fedex K-Mart Wells All 25 Delta Enron Fedex K-Mart Wells All 25
Fargo Firms Fargo Firms

Yield Mean Abs. 37.16 24.29 33.98 27.02 22.02 28.88 29.47 18.29 27.93 24.02 20.70 24.10
Basis Point Std. 37.54 27.45 35.23 27.81 24.82 29.60 35.44 20.24 33.85 28.91 24.67 27.03
Errors (bps) Mean 5.33 1.50 12.99 7.44 5.92 8.17 2.24 2.14 4.61 0.67 4.60 3.95
Dollar Mean Abs. 2.64 1.49 1.45 2.18 1.03 1.65 2.19 1.16 1.23 1.99 0.98 1.43
Pricing Std. 2.88 1.68 1.50 2.32 1.25 1.76 2.71 1.34 1.46 2.36 1.20 1.65
Errors Mean -0.04 0.11 -0.30 -0.23 -0.20 -0.19 0.01 -0.03 -0.19 0.09 -0.18 -0.10
(in $ for $100 par)
Percentage Mean Abs. 2.46 1.39 1.32 2.20 1.00 1.55 2.05 1.08 1.12 2.01 0.95 1.35
Pricing Std. 2.71 1.57 1.38 2.43 1.20 1.67 2.56 1.25 1.35 2.43 1.16 1.55
Errors (%) Mean 0.02 0.11 -0.26 -0.20 -0.19 -0.17 0.03 -0.04 -0.15 0.05 -0.17 -0.09
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Table 3: Market Implied Recovery Rates

This table reports the recovery rates by backing-out the relevant recovery rate parameters from the market price
of bonds. Out-of-sample recovery rates are computed (each quarter) by computing w(t) = w0 + w1 e−h(t), where
h(t) = Λ0 + Λ1 r(t). The estimates of Λ0, Λ1, w0, and w1 are taken from estimations done at date t−1. Reported is
the average, the standard deviation, the maximum, and the minimum recovery rate. The respective averages across
all 25 firms is shown under “All 25 Firms.” The RFV model assumes that dollar recovery, y, is y(u) = w(u)×F,
while the RT model assumes that y(u) = w(u)×B(u,T )×F.

Delta Enron Fedex K-Mart Wells All 25
Fargo Firms

RFV Model Mean 0.440 0.505 0.516 0.253 0.482 0.485
Std. 0.156 0.048 0.097 0.124 0.019 0.109
Max. 0.893 0.733 0.862 0.538 0.500 0.629
Min. 0.150 0.476 0.476 0.150 0.405 0.253

RT Model Mean 0.585 0.634 0.591 0.595 0.541 0.567
Std. 0.239 0.184 0.186 0.297 0.088 0.148
Max. 0.964 0.966 0.961 0.963 0.960 0.654
Min. 0.140 0.512 0.164 0.140 0.509 0.482
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